Narrow-Angle Astrometry

Michelson Summer School CfA, 2002

Benjamin Lane (Caltech)

M. M. Colavita & A. F. Boden (JPL)

Overview

- Motivation
- Theory
- Sources of Error
- Example
- Phase Referencing
- Future Design Considerations

Astrometry & Planets

$$\Delta\theta \cong 1000 \frac{m_p/m_J}{M_*/M_S} \frac{a/\text{AU}}{D/pc} \mu \text{asec}$$

- Good comlement to RV, especially for outer planets.
- Astrometry provides inclinations, masses

Gravitational Microlensing

- Astrometry +
 Photometry of lensing events allows one to determine lens mass and distance.
- Need high precision (10 micro-arcsec).
- Lens events often very faint (K~16).

Figure from Boden, Shao & van Buren, 1998

Top-Level Requirements

- ~20 micro-asec over 10 years
- For planet studies: $m_K \sim 10$ for target, ~ 14 for references (to get few hundred targets).
- For micro-lensing: $m_K \sim 16$ for target, likely need nearby bright reference.
 - ◆ Possible to have a few brighter ones (m~10), need to know proper motions.

Interferometric Astrometry

Delay equation:

$$d = B \bullet s + c$$

$$\Delta d = B \bullet \Delta s$$

For 100-m baseline & 5 nm delay precision, we can expect 10 micro-arcsecond precision.

Dual-Star Interferometry

Noise Sources

- 10 Micro-arcsec is great! But:
 - ◆ Atmospheric Noise
 - ◆ Baseline Knowledge Errors
 - ◆ Instrumental Path Errors
 - ◆ Detector Noise

$$\sigma_s \approx rss[\frac{\delta d}{|B|}, k^{-1} \frac{\delta \phi}{|B|}, \frac{\delta B}{|B|} \Delta s]$$

Atmospheric Noise (1 of 3)

- Turbulent atmosphere induces fringe motion (seeing):
 - ◆ ~10 ms, 10 cm at 0.5 microns.
 - Recall: $r_0 \propto \lambda^{6/5}$
- Less severe for near-IR
 - Note that "coherence volume" $\sim \lambda^{18/5}$
 - ◆ K band (2.2 microns) seems to be optimal choice.

Atmospheric Noise (2 of 3)

- Over narrow fields (~30-60 arcsec) atmospheric error is correlated and can largely be subtracted out.
- Most sensitive to high-altitude turbulence

• From:
$$\sigma_d^2 \propto \frac{1}{t} \int dh C_n^2(h) h^2$$

Need to consider unusual instrument sites, i.e. South Pole (no jet stream).

Atmospheric Noise (3 of 3)

■ Short Baseline:

$$\theta h >> D$$

$$\sigma_d \propto \theta^{1/3}$$

■ Long Baseline:

$$\theta h \ll B$$

$$\sigma_d \propto \theta B^{-2/3}$$

Atmospheric limits to a narrow-angle measurement

Wide-Angle Baseline

- Need to know baseline to ~50 microns.
- Measure fringe position of many known stars, solve $d = B \cdot s + c$
- Need milliarcsecond level astrometry.

Instrumental Path Errors

- Internal laser metrology fiducial is not located at pivot points that define the wide-angle baseline.
- Gives error term that looks like a correction to the baseline.
- Need to know CC location to high accuracy (~50 μm).

Detector Noise (1 of 2)

The fringe tracker measures the fringe phase with limited precision

$$\delta\phi \approx \frac{1}{SNR}$$
 where $SNR^2 = \frac{(NV)^2}{2(N+B+4\sigma^2)}$

■ Need enough photons to get non-zero SNR in a coherence volume

Detector Noise (2 of 2)

- A phase-tracking interferometer can track the wrong fringe in envelope.
- Hence requires group delay tracking:
 - Use spectral dispersion to measure phase vs. wavelength.

Noise Summary

- Atmosphere imposes ~10-100 micro-arcsec depending on atmospheric details – pick good site.
- Wide-angle baseline knowldege required to ~50 microns known technology.
- Instrumental path errors must be controlled
 instrument design critical.
- Longer baselines help.

Narrow-angle astrometry with PTI

- Dual-star feed to separate out target star from astrometric reference
- Dual beam combiners to allow simultaneous measurements
 - One beam combiner tracks target star
 - Second beam combiner switches between target
 & reference
- Laser metrology to measure internal delay

Long Delay Line

Siderostat

Dual-star module

Beam Combiner

61 Cyg Astrometry (1 of 5)

61 Cyg Astrometry (2 of 5)

61 Cyg Astrometry (3 of 5)

61 Cyg Astrometry (4 of 5)

61 Cyg Astrometry (5 of 5)

Figure by A. F. Boden & ISC

Why Phase Referencing?

- Narrow-angle astrometry requires 2 stars to be tracked (target + reference)
 - ♦ Interferometers have notoriously low sensitivity (PTI: $m_K < 5.5$)
- Need a way to use one bright star with fainter references or we're limited to visual binaries
- Phase Referencing

What is Phase Referencing?

- Analogous to NGS adaptive optics on a large telescope:
 - ◆ Fringe track on a bright star within the isokinetic patch of the target star (30-50 asec)
 - ◆ Measure fringe motion induced by atmosphere
 - ◆ Correct using optical delay lines
- Allows integration times longer than would ordinarily be possible (250 ms achieved)
- Well suited for astrometry since we're looking at nearby (and thus bright) stars by design.

Phase Referencing in Practice

- Experiment at PTI
- 2 bright stars
- One FT tracking, other just measuring fringe phase
- Data with loop open and closed

In Practice (2 of 2)

Phase Referencing Servo

- Cuts out frequencies below FT bandwidth
- Depends on details of system (processing speed)

Phase Referencing (2)

- Residual fringe motion causes visibility loss
- Effect depends on details of servo ("Feed Forward" or "Feedback")
- Can usually expect 35-50% visibility loss

Design Considerations

- Choose site with good seeing, no high-altitude winds (South Pole).
- 2 orthogonal baselines (3-4 apertures, or rotational synthesis at Pole).
- Long baselines (200 meters).
- Choose a robust internal metrology system (multicolor) in the center of the beam.
- Consider using siderostats (easier to measure/model/control systematics).

Summary

- Narrow-angle astrometry allows 10-100 microarcsecond precision from the ground using modest (2-m class) telescopes.
 - ◆ Sufficient to study outer-Solar-system type planets and a good way to get masses.
- It requires significant care in instrument design, and patience from the observer (and funding agency!).